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We propose a model of the structure of a napped composite. Characteristic trends in the structure of the 

material are delineated, and the effective thermal conductivity of the model structure is calculated for these 

trends with allowance for conduction and radiation. 

Object of Investigation and Statement of the Problem. A high-temperature insulation with a nap structure 

("vorsolin") made of refractory fibers is distinguished by considerable resistance to pulsed temperature effects, 
accelerations, and vibrations. 

Usually, the time allotted for studying and selecting the variants of the structure of a heatproof layer is 

very limited, and the cost of the components and technological expenditures are high. Under these conditions a 

tendency has developed in recent years toward a complex theoretical and experimental investigation of the 

properties of composites. A large number of variants of a material with previously specified thermophysical 

properties are calculated as early as at the stage of computer-aided design, and only those offering the greatest 

promise (judging by the set of thermophysical, technological, and operation characteristics) are selected for 
experimental verification. 

A typical structure of a heatproof nap layer (vorsolin) is depicted in Fig. 1. On base 1 (fabric made from 

refractory fibers) adjacent to a protected surface, fastening refractory threads 2 fix refractory nap loops 3 of the 

main heatproof layer. Depending on the intensity and duration of the temperature effect on the heat insulation, 

the temperature difference over the thickness of the nap heat shielding may constitute from tens to thousands of 

degrees (a fused layer 4 consisting of the material of the fibers can be seen on the surface of the vorsolin). 

Simulation of the Vorsolin Structure. To simplify the subsequent mathematical analysis, following the 

recommendations given in [1 ], we divide the napped material by conventional isothermal planes into several layers 

located sequentially with respect to the heat flux affecting the protected surface. Within the limits of each layer the 

thermophysical properties of the components of the nap layer are assumed to be known for the mean temperature 

of the layer. The outer layer with the maximum temperature will be called the layer of a "melt." If the prescribed 

temperature of the outer surface is lower than the melting temperature of the fibers of the threads, the layer of the 
melt is absent (its thickness is assumed to be equal to zero). 

Next, we distinguish in the material (Fig. lb) the layers of "loop arcs" and "nap sticks." If the outside loops 

are cut, the layer of loop arcs is absent. Then comes the layer of "fastening threads." The lower layer is the layer 

of the "fabric," i.e., of the base of the napped material immediately adjacent to the surface being protected. 

The specific (per unit area of the protected surface) thermal resistance of the vorsolin in the X -  Y plane 

is composed of the specific thermal resistances of the layers distinguished above. We will present the main stages 

in the calculation of the specific thermal resistance and the effective thermal conductivity of the napped heat 
shielding. 

Preliminary estimates made according to the recommendations of [ 1 -4  ] show that the basic mechanisms 
involved in the transfer of heat through the heat shielding layer is conduction through fibers and molecular and 
radiant heat transfer in the pores between the fibers. 
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Fig. 1. Schematic representation of a fragment of the structure of a heatproof 

napped composite material (vorsolin): a - l) base attached to the protected 

surface by a heat-resistant adhesive or by fastening threads; 2, 3) loops of 

nap from thermostable threads; 4) a layer of melt (when Toper > Tmelt) ; b 

- uncut loop of vorsolin:/) base (fabric); I/) layer of nap sticks; 111) layer 

of loop arcs; c - cut loop with fluffed thread. 

A distinctive attribute of the vorsolin structure making it difficult to use the already familiar models of 

fibrous materials and techniques of calculation of their thermophysical characteristics is the inclined and "twisted" 

orientation of nap loops with respect to the heat flux direction. To take into account the inclination and twisting of 

the nap loops, the following procedure is used [1 ]. Let us consider a structurally anisotropic material with the 

thermal conductivities ;tz and 2x in the directions Z and X. Then, the effective thermal conductivity of the material 

;t~ in the direction n, making the angle ~o with the Z axis, is determined by the relation [1 ] 

2 2 
2 ~ = ; l  zcos ~ + 2  xsin ~ .  (1) 

We shall present the sequence of calculation of the effective thermal conductivity of vorsolin, which is 

performed in several stages. 
At the first stage we calculate the effective thermal conductivity of the threads of the nap and the "fabric 

base" along, ;tll, and across 2x, the fibers with account for heat transfer by conduction through the fibers and the 

gas phase and by radiation. 

A "local" coordinate system is introduced for each of the material layers distinguished above. The Z 0 axis 

(longitudinal) coincides with the direction "characteristic" for a given layer. For example, for the layer of loop arcs 

the Zo axis lies in the plane of a loop and divides it into two symmetric parts (Fig. 1). The X 0 and II0 axes are 

orthogonal to the Z 0 axis. 
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At the second stage we calculate the conductive and radiative components  of the effective thermal  

conductivity of the distinguished layers in the direction of the axes of the local coordinate system Xo,  Yo, Z0. 

At the third stage we determine the specific thermal resistance of each layer in the directions of the main 

coordinate system X, II, Z and the effective characteristics of the vorsolin structure as a whole. 

Let us consider in more detail the above-enumerated stages of calculation. 

Effective Thermal  Conductivity of the Threads of the Nap and the Fabric. The  threads have a porous 

structure that is twisted from elementary fibers made of materials capable of operating for the required time at 

specific temperatures.  Heat  is t ransferred through the thread by conduction and radiation. The effective thermal 

conductivities of the thread 2 It and 21 are determined from the simplest relations [5 ]: 

2 ,  = 2f (1 - / - / t h r )  + 2g]-/thr , (2) 

(3) 

)]'mol = )~g0 / (  1 + B/(p~)), 

and the radiant  component [6 ] is 

~-g = '~rnol + )~rad �9 

The  molecular component of the thermal conductivity of the gas [1 ] is 

= ( z c / 4 ) ( d f / ( 1 - H t h r )  ) ,  B =  1.75"10 . 4  P a . m ;  

(4) 

(5) 

2ra d (16/3)  2 - -  = nth r aTi3 Y (e w , ropt) /aal t ,  
(6) 

rtth r = 1 + (rtf -- 1) (1 -- Hthr) , Zop t = aat t l i . 

Let us assume that  l i = dth r when the thermal conductivity of the thread is calculated across it and that l i = 100dth r 

when the thermal  conductivity is calculated along the thread. 

The  coefficient of at tenuation of radiation can be determined for two variants. If the attenuation of radiation 

occurs mainly at the expense of its absorption on the surface of the fibers, then [ 1 ] 

aat t = 4 (1 - Hthr) 2 (2 - e f ) / Q r d f ) ,  (7) 

and if it occurs mainly at the expense of its dissipation on the surface of the fibers, then 

8 P-- r c. (8) 
a a t t -  3~df Pf 

In this case for "thick" (Xar c > 1) fibers 

rsc = 2 - (4/Xarc) sin Xar c + (4/X~arc) (1 - cos Xarc) , 

2ardf (nf - 1 ) / r  i 
Xarc = 2900 

(9) 

(df is in ktm). 

When radiation is scattered on thin, Xar c < 0 .6 /n ,  fibers (Rayleigh scattering) 

F~c (8 /3 )  4 z 1) / (n2 . = Xar c ((nf -- + 1)) 2 (10) 
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Relations (2)-(10) determine the effective thermal conductivity of fibers at the mean temperatures Ti of each of 

the distinguished layers. 

Elementary Cells of the Layers and Local Coordinate Systems in the Layers. Layer of Loop Arcs. An 

elementary cell of the layer of loop arcs represents a parallelepiped with the dimensions of the base 1 XHsew (in 

the X, Y plane) and with the length of the third side determined so as to include the curved portion of the loop 

arc. The angle between this side and the Z axis of the general coordinate system will be denoted by a: 

= arccos .//pack - Hfab (11) 
Hloop 

We can show that the length of the inclined side in the elementary cell of the layer of loop arcs is equal to R(1 + 

sin/5), where 

R (12) 
/3 = a r c s i n  Hloo p __ R "  

All the loops in a row are inclined to the line of sewing (parallel to the X axis) at angle 7. We assume that 

the loops of neighboring rows touch one another (there are no through gaps between rows of loops in the plane of 

a loop). The value of the angle 7 is determined by the relation 

7 = arcsin ( H s e w / ( 2 R ) ) .  (13) 

The distance between neighboring loops in a row along the X axis is determined by the step Hcoil with 

which the loops are coiled round the sewing thread. 

Let us introduce the local coordinate system X0, Y0, Zo, which is obtained from the general system X, Y, 

Z by rotating the Z, Y plane about the X axis through the angle a in the clockwise direction and then the Xo, Yo 

plane about the Z0 axis through the angle 7 in the anticlockwise direction. In this coordinate system the loops wilt 

lie in planes parallel to the Xo, Zo plane. 
To calculate the thermal conductivity of the layer of arcs, we use the simplified model of its structure shown 

in Fig. 2a and b. In this model a thread is replaced by a bar of equal area of square cross section with the side 

abar: 

%at = ( t / 2 )  dth r vrY. (14) 

The dimension H1 will be taken equal to the length of the inclined side of an elementary cell of the layer 

of arcs (see above): 

H 1 = R (1 + sinfl) ,  (15) 

and we determine L from the condition of equality between the volumes of the arc of the thread and the rectangular 

bar simulating it: 

(16) 
L = R (~/2 + fl) - H 1 + aba r , 

and apor from the condition of equality between the porosity of the model and the real material 

apor  ~-" 

2 
aba r (aba r (H 1 + L) -- aba r -- L H  1 (1 - //arc)) 

L H  1 (1 - / /a rc )  

(17) 

We can show that 
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Fig. 2. Simplified model of a nap layer (a), elementary cells of the layer of 

loop arcs (b) and of the layer of nap sticks (c). 

/ / a r c  ~ 1 - -  

2 
zcdth r (~ + 2/5) (18) 

4HsewHcoil R (1 + sin fl) cos a 

Thus, expressions (11)-(18) determine all the geometric parameters of the simplified model of the structure 

of the layer of arcs. 

Layer  of Nap Sticks. An elementary cell of the layer of nap sticks also represents a parallelepiped. The 

length of an inclined side of the parallelepiped is determined proceeding from the fact that only linear portions of 

threads could fall into a given cell. We can show that the length of an inclined side is H 2 = R cos2fl/sin ft. In the 

simplified model of the layer (Fig. 2a and c) the fibers are oriented vertically. 

The local coordinate system differs from the local coordinate system of the layer of loop arcs by an 

additional rotation about the Yo axis through the angle ft. The height H 2 of the model is equal to the length of the 

linear portion of the thread: 

H 2 = R / t a n  ft .  (19) 

The dimension aba r is given by expression (14), and the value of M can be found from the condition of 
equality between the porosities of the nap sticks and the model: 

M - abar (20) 

~/ 1 - / / n . s t  

We can show that/-/n.st (the porosity of the layer of nap sticks) is determined from the expression 
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Fig. 3. Schematic of combining the thermal resistances of individual parts. 

/Tn.s t  = 1 - 
Jrdt2hr (21) 

2 H c o i l H s e  w c o s / 5  c o s  a " 

Thus, relations (1 I)-(14) and (19)-(21) determine all the geometric parameters of the model of the layer 

of nap sticks. 
Layer of Fastening of Nap Sticks. Taking into account the fact that the layer of fastening occupies a small 

fraction of the volume of the material, we consider that the effect of this layer on the effective thermal conductivity 

of the heatproof packet can be taken into account by increasing the thickness of the fabric l aye rby  the value dthr. 

Fabric Layer. The means of calculating the effective thermal conductivity of fabrics are detailed in [1 ], 

and therefore we will not consider it here to save space. 

Calculation of the Effective Thermal Conductivity of Simplified Models. Let us consider the basic layers 

of loop arcs and nap sticks, since the calculation of the thermal conductivities of the remaining layers does not 

involve any difficulties. 
Let us mentally divide the model of the arcs by a system of isothermal and adiabatic planes, as shown in 

Fig. 2a and b. 
The regions with the thermal resistance R 1 correspond to the upper portion of the arc of the heat-shielding 

thread, R2 to the lower portion of the arc, R 3 to the pore region bounded by the arc, R4 to the through pores. The 

scheme of combining the thermal resistances for calculating the effective thermal conductivity in the direction Z0 

is shown in Fig. 3. 
The values of the thermal resistances are determined from the formulas 

Rlzo = 1 / 0 ~ •  , R2z 0 = ( H  1 - a b a r ) / 0 ~ l l  a 2 a r )  , 

H 1 - -  a b a  r 
= , R4zo = H 1 / ( 2 g  L a p o r )  . R3zo 2g (L - abar) aba r 

(22) 

All of the geometric parameters in Eqs. (22) are known; 211 and 2• are determined by relations (2) and 
(3). It is necessary to determine the thermal conductivity of the gas filling the space between the threads of the 

heat shielding. 
Let us avail ourselves of the approach given above. The thermal conductivity of the gas in pores 2g is 

composed of molecular and radiant components (4). The molecular component is calculated from formula (5). The 
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parameters A s, p, and B are assumed to be specified, while the mean free path of the molecules ~ in the direction 

Z 0 is taken to be equal to half the loop height in the direction Z0: 

= Hloop/2. (23) 

We calculate the radiant component from formula (6). The effective refractive index of the layer of arcs 

with allowance for its porosity is determined by an expression similar to relation (10): 

nar c = 1 + (nth r -- 1) (1 - / / a r c ) ,  (24) 

The coefficient of attenuation of radiation can be calculated from formula (7). In the given case the area 

of an elementary cell that absorbs radiation in the direction Z 0 is equal to abarL , while teh total area of the 

elementary cell in the direction normal to Zo is equal to L(aba r + apor). Taking into account relation (23), we obtain 

2 (2 - e) aba r 

aatt  = //loop (abar + apor) " 
(25) 

The value of l entering into Eq. (6) is taken to be equal to Hpack/COS a, since the layer of the nap has 

precisely this size in the direction Z 0. 

Thus, using the above relations, it is possible to calculate all the quantities entering into formulas (22) 

and, consequently, to determine the effective thermal conductivity of the layer of arcs in the direction Z 0. 

The calculation of the effective thermal conductivity of the layer of arcs in the directions X o and YO and 

of the effective thermal conductivity of the layer of nap threads for all three directions of the axes in the local 

coordinate system is carried out in the same way. 

Calculation of the Effective Thermal Conductivities of Layers along the Axes of the General Coordinate 

System. Suppose the thermal conductivity of the layer of arcs in the direction of the axes of the local coordinate 

system of this layer has been determined by the above-described technique and has the values 2xo, 2y o, and 2z0. 

To determine the themal conductivity of this layer in the direction of the axes of the general system of coordinates, 

we use relations similar to relation (1). 

Let us recall that the system of coordinates 2:0, Y0, Z0 was obtained from X, Y, Z by two successive 

rotations: about the X axis through the angle a and about the Z0 axis through the angle 7. For the angle y we can 
write 

2x 1 = 2x 0 c~ 2 . 2 Y + J ' y o S l n  y ,  

2 . 2 (26) 
]tYl = ~ y o C ~  y +~xoSln  y ,  

and for the angle a 

)t.Zl ---- ~zo , 

~'x =/~x 1 ' 

2 . 2 
2y = ~ y l  COS a +)].Zl s in a ,  (27) 

/l"z = ~'z 1 cOs2 2 a + 2y 1 sin a .  

Similarly we determine the values of the effective thermal conductivity for the layer of nap sticks. 
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The procedure described in this work was implemented in the form of a computer program, which makes 
it possible at the design stage to calculate the effective thermal conductivity of a fibrous anisotropic material having 

a complex structure and exposed to large temperature differences over its thickness. The initial data for the program 

are the geometric characteristics of the material, the temperature dependences of the thermal conductivity of the 

material components, and the temperatures at the boundaries of the heat-shielding packet. As a result of calculation 

we determined the effective thermal conductivities of each of the layers and of the entire material in the directions 

of the axes of the general coordinate system. 

N O T A T I O N  

a, [3, 7, ~o, angles; 2x, ,~y, 2z, )~o, thermal conductivities of the material in the direction of the X, 11, Z axes 

of the '~global" coordinate system and in direction T; 2xo, 2y0, 2so, 2xl, 2y 1 , 2zl, thermal conductivities of the material 
in the direction of the axes of the "local" coordinate system; ~ [I ' 2• 2f, thermal conductivity of a thread along and 

across the fibers and of a fiber proper; 2g, 2g 0' 2too 1, )'tad, thermal conductivities of the gas in the pores of a thread 

at pressures p and Po, respectively, molecular and radiant components of the thermal conductivity of the gas 

component in the pores; Hthr, Harc, Hn.st, porosities of a thread, layers of arcs, and nap sticks; B, molecular 

constant; ~, mean free path of gas molecules in the pores of a thread; dthr, df, diameters of a thread and a fiber 

from which the thread is composed; Ti, mean temperatyure of the i-th layer; l i, Zopt, geometrical and optical 

thicknesses of a layer in which radiation attenuation takes place; aatt, coefficient of radiation attenuation; a, Stefan- 

Boltzmann constant; e w, ef, emissivities of the walls and the material of the fibers; Y(ew, Zopt), Poltz function; nf, 

nthr, narc, refractive indices of a fiber, a thread, and the layer of arcs; p, pf, density of a thread and the material 

of a fiber; Hpack, Hfab, //loop, Hse w, Hcoil, R, geometric parameters of the real material; abar, apor, HI,  H2, L, M, 
geometric parameters of the model structure; R1, R2, R3, R4, thermal resistances. 
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